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Problem and Motivation



Inspired by slides from the Johnson Space Center Dexterous Robotics Team.
[1] NASA, “Artemis,” NASA, [Online], 2024.
[2] NASA, “Moon to Mars Architecture,” NASA, [Online], 2024.

Robotics for Space Exploration
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The Artemis missions will 
return humanity to the 

Moon to learn about 
establishing continuous 

presence in space.

Crew time could be used 
more effectively for 

science mission goals if 
robots help with the 
many tasks of space 

exploration.

https://www.nasa.gov/humans-in-space/artemis/
https://www.nasa.gov/moontomarsarchitecture/


Human-Robot Teams in Extreme Domains
We need robots to operate as capable, trusted agents on human-robot 

teams in various safety-critical problem domains.
To achieve this, we consider two key challenges: (1) robot manipulation 

capabilities and (2) robot safety reasoning.
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Tool-Use Tasks on Human-Robot Teams
Reasoning over object affordances (“action 
possibilities” or “opportunities for action”) 
and executing afforded actions in tool-use 

tasks are challenging.

We want robots to function on human-robot 
teams alongside humans without robotics 

experience.

Therefore, we want our methods and results 
to be explainable and minimize expert 

knowledge engineering.
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[3] J. Gibson, “The Theory of Affordances,” Perceiving, Acting, and Knowing: Towards 
an Ecological Psychology, 1977.
[4] AMP von Bayern et al., “Compound Tool Construction by New Caledonian 
Crows,” Scientific Reports, 2018.



[5] M. Vasic and A. Billard, “Safety Issues in Human-Robot Interactions,” IEEE ICRA, 2013.
[6] Y. Zhang et al., “DANLI: Deliberative Agent for Following Natural Language Instructions,” arXiv preprint arXiv:2210.12485, 2022.
[7] J. D. Lee and K. A. See, “Trust in Automation: Designing for Appropriate Reliance,” Human Factors, 2004.
[8] P. Robinette et al., “Overtrust of Robots in Emergency Evacuation Scenarios,” IEEE Conference on HRI, 2016.
[9] B. Kuipers, “Trust and Cooperation,” Frontiers in Robotics and AI, 2022.

Trust and Safety on Human-Robot Teams

6 of 99

Safety and trust are important when 
robots operate alongside humans.

Human operators may mistrust or 
overtrust robots when expectations do 
not align with the robot’s capabilities.

We explore explainable methods to 
promote understanding and trust for 

safe operations on human-robot teams.



Dissertation Contributions
Autonomous planning of complex assembly actions

(ICRA 2022)

Reliable and explainable execution of tool-use tasks
(IROS 2024)

Safety reasoning on human-robot teams
(UR 2025, Under Review)
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Dissertation Contributions
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(higher-level 
discussion)

(most technical
detail)



Dissertation Contributions
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Autonomous planning of complex assembly actions
(ICRA 2022)

Reliable and explainable execution of tool-use tasks
(IROS 2024)

Safety reasoning on human-robot teams
(UR 2025, Under Review)



Planning Complex Actions:
Causal Control Basis



[10] J. Pavlasek, S. Lewis, K. Desingh, and O. C. Jenkins, “Parts-Based Articulated Object Localization in Clutter Using Belief 
Propagation,” IEEE IROS, 2020.

Complex Actions in Assembly Tasks
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Tool-use and assembly tasks require advanced planning over 
objects, their separate parts, and their affordances.



[11] D. H. Ballard, “Task Frames in Robot Manipulation,” AAAI, 1984.
[12] S. Hart, P. Dinh, and K. Hambuchen, “The Affordance Template ROS Package for Robot Task Programming,” IEEE ICRA, 2015.

Object-Centric Controllers
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Reasoning over 
affordances and 

executing actions can be 
simplified with object-

centric controllers, which 
formulate objectives with 
respect to object or task 

frames instead of the 
world frame.



[13] R. Platt, A. H. Fagg, R. A. Grupen, “Whole Body Grasping,” [Online], 2004.
[14] R. Platt, A. H. Fagg, R. A. Grupen, “Nullspace Composition of Control Laws for Grasping,” IEEE IROS, 2002.
[15] R. Platt, A. H. Fagg, R. A. Grupen, “Manipulation Gaits: Sequences of Grasp Control Tasks,” IEEE ICRA, 2004.
[16] R. Platt, A. H. Fagg, R. A. Grupen, “Null-Space Grasp Control: Theory and Experiments,” IEEE Transactions on Robotics, 2010.

Controller Compositions
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Object-centric controllers 
can be composed to 

create a behavior with a 
multi-objective role in a 

plan, meaning it achieves 
multiple task goals.

Composed behaviors 
prioritize one behavior 

over another so they can 
be executed concurrently.

https://symbiotic-computing.org/fagg_html/movies_umass/#torso_2004


[14] R. Platt, A. H. Fagg, R. A. Grupen, “Nullspace Composition of Control Laws for Grasping,” IEEE IROS, 2002.
[15] R. Platt, A. H. Fagg, R. A. Grupen, “Manipulation Gaits: Sequences of Grasp Control Tasks,” IEEE ICRA, 2004.
[17] M. Sharma et al., “Hierarchical Object-Centric Controllers for Robotics Manipulation,” arXiv preprint arXiv:2011.04627, 2020.
[18] S. Hart and R. Grupen, “Natural Task Decomposition with Intrinsic Potential Fields,” IEEE IROS, 2007.

Challenge: Autonomous Composition
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Many works compose controllers using predefined priorities based on 
expert experience.  We want the robot to autonomously compose 

controllers to minimize expert knowledge engineering.

For example, the robot needs 
to use its gripper (green block) 

to push the red block up the 
grey wall. We expect the robot 
to autonomously prioritize the 
given controllers. In this case, 

it prioritizes force (0) over 
positioning (1).

Possible 
Controller
Target



[19] C. Xiong et al., “Robot Learning with a Spatial, Temporal, and Causal And-Or Graph,” IEEE ICRA, 2016.
[20] J. Pearl, Causality, Cambridge University Press, 2009.
[21] I. Dasgupta et al., “Causal Reasoning from Meta-Reinforcement Learning,” arXiv preprint arXiv:1901.08162, 2019.

Insight: Causality
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We take inspiration from causal reasoning, or cause-effect 

relationships in long-horizon tasks.

We expect the robot to autonomously compose controllers by 

quantitatively predicting which composed behavior will achieve 

the intended composed effects within a task plan.



[19] C. Xiong et al., “Robot Learning with a Spatial, Temporal, and Causal And-Or Graph,” IEEE ICRA, 2016.

Causal Control Basis
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We propose a causal control basis, which annotates a control basis 

(set of object-centric controllers that form the building blocks of 

action execution) with causal graphs to enable autonomous controller 

compositions based on the intended composed effects.

We test our approach in furniture assembly tasks.



Composed Causal Graphs
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inserted(obj, target)

grasped(obj)

rotated(obj, 𝒒target)at(obj, 𝒑target)

𝜙rot(𝒒target)𝜙pos(𝒑target)

The causal control basis 
describes the multi-objective 
furniture connection actions

by specifying the 
precondition states,

controllers that will cause a 
change in the environment,

and the intended composed 
effects of the action. 

state

controller

composed state

pre-condition

effect

composed effect



Composed Causal Graphs
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inserted(obj, target)

grasped(obj)

rotated(obj, 𝒒target)at(obj, 𝒑target)

𝜙rot(𝒒target)𝜙pos(𝒑target)

The composed causal graph 
indicates what behaviors may 

achieve the composed 
effects, but not how to 

compose the controllers to 
realize these effects.

left-hand side:
lower-priority

right-hand side: 
higher-priority



Composed Causal Graphs
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inserted(obj, target)

grasped(obj)

rotated(obj, 𝒒target)at(obj, 𝒑target)

𝜙rot(𝒒target)𝜙pos(𝒑target)

The robot will autonomously 
estimate the state-action 
utility of executing each 
possible composition to 

achieve the intended effects 
in the assembly task.

left-hand side:
lower-priority

right-hand side: 
higher-priority



To estimate how well each multi-objective 
action 𝑎 will achieve its composed 

effects, the robot will perform 𝑁 Monte 
Carlo simulations to estimate the state-
action utility of possible compositions

Furniture Part Connection Policy
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During task execution, the robot will 
choose the behavior with the maximum 

predicted state-action utility based on the 
Monte Carlo simulations:

Furniture Part Connection Policy
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[22] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach, Fourth Edition, Pearson Education, 2020.
[23] M. L. Litman, T. L. Dean, and L. P. Kaelbling, “On the Complexity of Solving Markov Decision Problems,” arXiv preprint 
arXiv:1302.4971, 2013.



[24] Y. Lee, E. S. Hu, and J. J. Lim, “IKEA Furniture Assembly Environment for Long-Horizon Complex Manipulation Tasks,”
IEEE ICRA, 2021.

Causal Control Basis for Furniture Assembly
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We use an off-the-shelf 
high-level task planner 
to sequence high-level 

actions.  The causal 
control basis describes 
how to sequence low-
level controllers and 

how to autonomously 
compose the multi-

objective connection 
actions.



Assembly Experiments
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The causal control basis selected composition          for composed effect 
inserted and composition    for composed effect screwed-in.



The multi-objective actions the causal control basis predicted to 
achieve the composed effects enabled the robot to perform 

furniture assembly tasks with reasonable success.

The results provide evidence that the causal control basis 
effectively captures causal information relevant for 

autonomously composing controllers for complex behaviors.

Furniture Assembly Results

24 of 99

Connection 
Action

Successful 
Connections

Connection 
Attempts

Success 
Rate

Insert 20 28 0.714
Screw 40 42 0.952
TOTAL 60 70 0.857

[25] E. Sheetz et al., “Composable Causality in Semantic Robot Programming,” IEEE ICRA, 2022.



Future Work for Composed Causality
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Future work beyond the scope of the dissertation includes:
• Evaluation in real-world assembly tasks
• Extending to tasks that require whole-body manipulation
• More detailed failure analysis to determine patterns in performance



Planning Complex Actions
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We demonstrate that the causal 
control basis effectively provides 

causal information for autonomous 
controller composition (ICRA 2022).

The causal control basis uses 
explainable cause-effect relationships 

to minimize the expert knowledge 
required to perform complex tasks.

[25] E. Sheetz et al., “Composable Causality in Semantic Robot Programming,” IEEE ICRA, 2022.



Dissertation Contributions
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Autonomous planning of complex assembly actions
(ICRA 2022)

Reliable and explainable execution of tool-use tasks
(IROS 2024)

Safety reasoning on human-robot teams
(UR 2025, Under Review)
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Reliable and Explainable Actions:
Grasp Reflex Model



[26] Y. Zhang et al., “Plan Explicability for Robot Task Planning,” RSS Workshop on Planning for Human-Robot Interaction: Shared 
Autonomy and Collaborative Robotics, 2016.

Reliable and Explainable Behaviors
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To promote understanding on human-robot teams, we need the complex 
actions in tool-use and assembly tasks to be explainable.



[27] A. Bicchi and V. Kumar, “Robotic Grasping and Contact: A Review,” IEEE ICRA, 2000.
[28] T. Mouri, H. Kawasaki, and S. Ito, “Unknown Object Grasping Strategy Imitating Human Grasping Reflex for Anthropomorphic 
Robot Hand,” Journal of Advanced Mechanical Design, Systems, and Manufacturing, 2007.

Robot Grasping
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Robot grasping achieves 
contacts and forces to restrain 

objects for manipulation.

Multi-fingered end-effectors 
provide abundant sensor 
signals and degrees-of-
freedom for performing 

dexterous manipulations.



[26] Y. Zhang et al., “Plan Explicability for Robot Task Planning,” RSS Workshop on Planning for Human-Robot Interaction: Shared 
Autonomy and Collaborative Robotics, 2016.
[29] NASA, “NASA Risk Management Handbook,” [Online], 2011.
[30] NASA, “NASA Safety Culture Handbook,” [Online], 2015.

Challenge: Explainability in Action Models
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Data-driven approaches for learning and modeling actions show 

significant promise and great performance.

But neural network and deep learning approaches tend to be black-

box models that lead to poor understanding on human-robot 

teams in safety-critical domains.

https://ntrs.nasa.gov/api/citations/20120000033/downloads/20120000033.pdf
https://standards.nasa.gov/sites/default/files/standards/NASA/Baseline/1/nasa-hdbk-870924_with_change_1.pdf


[31] A. Anekar and B. Bordoni, “Palmar Grasp Reflex,” StatPearls Publishing, 2012.
[32] Y. Futagi, Y. Toribe, and Y. Sazuki, “The Grasp Reflex and Moro Reflex in Infants: Hierarchy of Primitive Reflex Responses,” International 
Journal of Pediatrics, 2012.
[33] G. Bekey and R. Tomovic, “Robot Control by Reflex Actions,” IEEE ICRA, 1986.

Insight: Human Grasp Reflex
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We take inspiration from the human grasp reflex, 
specifically the involuntary newborn palmar reflex.

Similar reflex control approaches map sensory data 
to learned patterns of response.

We aim to learn a reflex model for grasping 
that reduces knowledge engineering 

while remaining explainable.



Grasp Reflex Modeling
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We propose a simple, explainable grasp reflex model that 

allows the robot to adjust its grasp on a tool until it is secure 

enough for a tool manipulation task.



[34] A. Halevy, P. Norvig, and F. Pereira, “The Unreasonable Effectiveness of Data,” IEEE Intelligent Systems, 2009.

Grasp Reflex Model
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The grasp reflex model uses a simple 
logistic regression model to map 

continuous end-effector joint states to 
discrete symbolic adjustment states.

The known symbolic adjustment states 
are prerequisite states for adjustment 
actions that allow the robot to improve 

its grasp on the tool.

+Y-Y



Grasping Novel Tools
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After learning the grasp reflex model on a training tool, we 
performed experiments to test how well the learned reflex 

generalized to grasping novel test tools.

training
drill

testing
tools



Grasping Novel Tools
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We provide one reference joint 
configuration for each test tool as an 

example of a secure grasp.

The robot repeatedly attempts grasps and 
adjusts its grasp until the grasp reflex 

model predicts the grasp is secure.
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One-Shot Tactile Servoing on Novel Tools

Gyroscopic Drill

Screwdriver Paint Scraper Level

Compressed Air CanSelfie StickSUCCESS!

SUCCESS! FAILED FAILED

SUCCESS!SUCCESS!



Grasp Reflex Model Results
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Tool Practical for 
End-Effector

In-Hand Grasp 
Success Rate

Manipulation Grasp 
Success Rate

Drill Yes 1.00 1.00

Screwdriver Yes 1.00 0.83

Paint Scraper Yes 1.00 0.67

Level Yes 0.83 0.67

Gyroscopic Drill Yes 1.00 0.50

Selfie Stick No 1.00 0.33

Compressed Air Can No 1.00 0.17

CUMULATIVE - 0.98 0.60

PRACTICAL 
CUMULATIVE - 0.97 0.73

We evaluated
in-hand (the robot 

did not drop the 
tool) and 

manipulation 
(secure enough 
for subsequent 
tool-use tasks) 

grasps.

[35] E. Sheetz et al., “Multi-Fingered End-Effector Grasp Reflex Modeling for One-Shot Tactile Servoing in Tool Manipulation Tasks,” 
IEEE IROS, 2024.



Grasp Reflex Model Results
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The results show 
promise for a 

simple, inherently 
explainable action 

reflex. However, 
we may need to 

model 
distributions of 

tool features (size, 
graspable surface 

area, weight 
distribution).

[35] E. Sheetz et al., “Multi-Fingered End-Effector Grasp Reflex Modeling for One-Shot Tactile Servoing in Tool Manipulation Tasks,” 
IEEE IROS, 2024.

Tool Practical for 
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In-Hand Grasp 
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Success Rate
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Future Work for Grasp Reflex Modeling
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Future work beyond the scope of the dissertation includes:
• Training over a set of representative tools and features
• Learning different types of grasps (precision, trigger) and adjustment actions
• Autonomous exploration or “play” to learn about different tools



Explainable Actions
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We demonstrate the promise of a 
simple, inherently explainable grasp 

reflex model for achieving reliable 
performance and generalizable 

behaviors (IROS 2024).

The grasp reflex model uses 
explainable symbolic adjustments to 

promote understandable action 
execution on human-robot teams.

[35] E. Sheetz et al., “Multi-Fingered End-Effector Grasp Reflex Modeling for One-Shot Tactile Servoing in Tool Manipulation Tasks,” 
IEEE IROS, 2024.
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Dissertation Contributions
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Safety Reasoning:
Human-Robot Red Teaming



Safety and Trust
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[5] M. Vasic and A. Billard, “Safety Issues in Human-Robot Interactions,” IEEE ICRA, 2013.
[6] Y. Zhang et al., “DANLI: Deliberative Agent for Following Natural Language Instructions,” arXiv preprint arXiv:2210.12485, 2022.
[9] B. Kuipers, “Trust and Cooperation,” Frontiers in Robotics and AI, 2022.
[36] BS Dhillon, ARM Fashandi, and KL Liu, “Robot Systems Reliability and Safety: A Review,” Journal of Quality in Maintenance 
Engineering, 2002.

For robots to be effective performing 
cooperative tasks in safety-critical domains, 

we expect robots to earn trust on human-
robot teams.



Challenge: Safety Reasoning
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Despite the consensus on the importance 
of robot safety, much research overtrusts 
the robot's capabilities and/or the human 
operators to guarantee safe operations.

[5] M. Vasic and A. Billard, “Safety Issues in Human-Robot Interactions,” IEEE ICRA, 2013.
[6] Y. Zhang et al., “DANLI: Deliberative Agent for Following Natural Language Instructions,” arXiv preprint arXiv:2210.12485, 2022.
[9] B. Kuipers, “Trust and Cooperation,” Frontiers in Robotics and AI, 2022.
[36] BS Dhillon, ARM Fashandi, and KL Liu, “Robot Systems Reliability and Safety: A Review,” Journal of Quality in Maintenance 
Engineering, 2002.



[37] B. Kuipers, “AI and Society: Ethics, Trust, and Cooperation, Communications of the ACM, 2023.
[38] A. Yang et al., “Characterizing Warfare in Red Teaming,” IEEE Systems, Man, and Cybernetics, 2006.
[39] D. F. Longbine, “Red Teaming: Past and Present,” School of Advanced Military Studies, Army Command and General Staff College, 2008.
[40] M. Zenko, Red Team: How to Succeed by Thinking Like the Enemy, Basic Books, 2015.

Insight: Red Teaming
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Robots use models to simplify reasoning in 
an unboundedly complex world.

While simplifying models are useful, 
disastrous outcomes occur when a critical 

factor is left out of the model.

Red teaming considers adversarial 
perspectives to improve decision making.



Computational Red Teams

49 of 99

Computational red teams (CRTs) are teams of computational agents 
that automate the adversary red team trying to thwart the blue team’s 
objective.  The CRT helps improve decision making on the blue team.

[41] D. Ganguli et al., “Red Teaming Language Models to Reduce Harms: Methods, Scaling Behaviors, and Lessons Learned,” arXiv 
preprint arXiv:2209.07858, 2022.
[42] E. Perez et al., “Red Teaming Language Models with Language Models,” arXiv preprint arXiv:2202.03286, 2022.

Computational Red Teaming

Blue Team
(ChatGPT)

Red Team
(English-like chatbot)



CRTs for Safety-Critical Tasks
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Our preliminary experiments with the current state-of-the-art 
computational agents indicate that fully automated CRTs may not 

effectively update modeled knowledge. Furthermore, research suggests 
humans are necessary for evaluative moral and ethical judgments.

Computational Red Teaming

Blue Team
(ChatGPT)

Red Team
(English-like chatbot)

[43] T. B. Sheridan, “Human-Robot Interaction: Status and Challenges,” Human Factors, 2016.
[44] B. Kuipers, “How Can We Trust a Robot?,” Communications of the ACM, 2018.
[45] B. Kuipers, “Perspectives on Ethics of AI,” The Oxford Handbook of Ethics of AI, Oxford University Press, 2020.



Human-Robot Red Teaming Approach

51 of 99

Human-Robot Red Teaming

Human-Robot
Blue Team

Human-Robot
Red Team

To overcome challenges faced by computational red teams, we propose a 
human-robot red team (HRRT) to allow human and robot agents to 

collaboratively analyze safety in shared autonomy tasks.



Human-Robot Red Teaming Approach
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Human-Robot Red Teaming

Human-Robot
Blue Team

Human-Robot
Red Team

The HRRT (as a subset of CRT) does not act as an adversary thwarting the blue 
team’s objectives, but rather a challenger to the human-robot blue team’s 
modeled knowledge, expectations, assumptions, and contingency plans.

human-robot red 
teaming process

human-robot red 
team entity



[46] H. Abbass et al., “Computational Red Teaming: Past, Present, and Future,” IEEE Computational Intelligence Magazine, 2011.

Levels of Computational Red Teaming
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Computational red teams (CRTs) are categorized according to 
their level of reasoning:
• CRT0: Simple decision-making agents do not evolve.
• CRT1: Agents learn and adapt.
• CRT2: Teams of agents learn and adapt together.
• CRT3: Teams evolve within a dynamic environment.
• CRT4: Teams reflect and unlearn their biases to learn better 

approaches.



[46] H. Abbass et al., “Computational Red Teaming: Past, Present, and Future,” IEEE Computational Intelligence Magazine, 2011.

Levels of Red Teaming
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Computational red teams (CRTs) are categorized according to 
their level of reasoning:
• CRT0: Simple decision-making agents do not evolve.
• CRT1: Agents learn and adapt.
• CRT2: Teams of agents learn and adapt together.
• CRT3: Teams evolve within a dynamic environment.
• CRT4: Teams reflect and unlearn their biases to learn better 

approaches.

We suggest that human-robot red teaming will similarly benefit 
from multiple levels of capability to characterize responsibilities.



[46] H. Abbass et al., “Computational Red Teaming: Past, Present, and Future,” IEEE Computational Intelligence Magazine, 2011.

HRRTs as Subsets of CRTs
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Computational red teams (CRTs) are categorized according to 
their level of reasoning:
• CRT0: Simple decision-making agents do not evolve.
• CRT1: Agents learn and adapt.
• CRT2: Teams of agents learn and adapt together.
• CRT3: Teams evolve within a dynamic environment.
• CRT4: Teams reflect and unlearn their biases to learn better 

approaches.

We observe that some of the CRT levels focus on teams of agents and propose 
comparable levels to human-robot red teaming, where HRRTs are specific 

subsets of CRTs where computational agents work on teams alongside humans.



[9] B. Kuipers, “Trust and Cooperation,” Frontiers in Robotics and AI, 2022.

Levels of Human-Robot Red Teaming
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Human-robot red teams (HRRTs) are categorized according to 
their level of reasoning:
• HRRT2: Teams of human and robot agents learn and adapt 

together by enumerating possibilities given their knowledge 
of the environment.

• HRRT3: Teams of human and robot agents evolve within a 
dynamic environment by challenging assumptions implicit in 
their modeled knowledge.

• HRRT4: Teams of human and robot agents reflect together 
and improve modeled knowledge to address “unknown 
unknowns.”
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Overview of HRRT Levels and Iterations
Current Model
𝑴 = 𝑺,𝑨

Model 𝑀 is set of symbolic states 𝑆 and actions 𝐴 that 
describe the robot’s reasoning in an environment

A complete model 𝑀∗ of an unboundedly complex 
world is intractable, so the robot reasons over 

simplified model 𝑀 ⊂ 𝑀∗

We need to ensure model 𝑀 allows the team to 
adequately reason about safety, so we analyze what 

may be left out of 𝑀 to create updated model 𝑀′
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Overview of HRRT Levels and Iterations
Current Model
𝑴 = 𝑺,𝑨

Level HRRT2:
analyze possible 

states in 𝑀

HRRT2 identifies state transitions, however unlikely, and prompts 
the team to reflect on the validity of these possibilities and if there 

are expected possibilities not reflected by the current model
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Overview of HRRT Levels and Iterations
Current Model
𝑴 = 𝑺,𝑨

Level HRRT2:
analyze possible 

states in 𝑀

Level HRRT3:
analyze action 

assumptions in 𝑀

HRRT3 identifies implicit pre- and post-
condition assumptions, prompting the 

team to consider contingency plans
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Overview of HRRT Levels and Iterations
Current Model
𝑴 = 𝑺,𝑨

Level HRRT2:
analyze possible 

states in 𝑀

Level HRRT3:
analyze action 

assumptions in 𝑀

Level HRRT4:
analyze “unknown 

unknowns” not in model 𝑀

HRRT4 uses dialogue prompts in Σ to prompt deeper reflections on 
general safety, domain-specific questions, and “unknown unknowns”



HRRT Model Analysis
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Overview of HRRT Levels and Iterations
Current Model
𝑴 = 𝑺,𝑨

Level HRRT2:
analyze possible 

states in 𝑀

Level HRRT3:
analyze action 

assumptions in 𝑀

Level HRRT4:
analyze “unknown 

unknowns” not in model 𝑀

Updated Model
𝑴′ = (𝑺′, 𝑨′)



HRRT Model Analysis
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Overview of HRRT Levels and Iterations
Current Model
𝑴 = 𝑺,𝑨

Level HRRT2:
analyze possible 

states in 𝑀

Level HRRT3:
analyze action 

assumptions in 𝑀

Level HRRT4:
analyze “unknown 

unknowns” not in model 𝑀

Updated Model
𝑴′ = (𝑺′, 𝑨′)

iterate HRRT analyses on 
updated model

Repeated iterations generates 
set of model hypotheses



Given basic information about the domain 𝑀0, the red robot agents query 
the human-robot blue team to update the team’s modeled knowledge. 
This process assumes the blue team (specifically human agents) have 

some perspective or insight about the domain.

HRRT Experiments Overview
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Human-Robot Red Teaming

Human-Robot
Blue Team

(ChatGPT,
direction from researcher)

Human-Robot
Red Team

(automated methods, 
dialogue tree chatbot)

[47] OpenAI, ChatGPT, [Online], 2025.

https://chatgpt.com/
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Through simple English-like interactions, the human-robot team 
explores safety in different problem domains.

We iterate through the human-robot red teaming exercise, saving the 
model hypothesis for each iteration. 

Human-Robot Red Teaming

Human-Robot
Red Team

(automated methods, 
dialogue tree chatbot)

Human-Robot
Blue Team

(ChatGPT,
direction from researcher)



HRRT Experiments Overview
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All new symbols to the model hypotheses are proposed by the 
blue computational ChatGPT agent, as a result of prompts 

from the red computational chatbot agent.

Human-Robot Red Teaming

Human-Robot
Red Team

(automated methods, 
dialogue tree chatbot)

Human-Robot
Blue Team

(ChatGPT,
direction from researcher)



Example Interaction

66 of 99
[48] E. Sheetz, “Tool-Use Robot Manipulation Tasks for Cooperative and Explainable Operations in Safety-Critical Domains,” PhD 
Dissertation, University of Michigan, 2025.

Consider a team of robots conducting science experiments on the surface of 
Mars, communicating with ground control on Earth over time delay.
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Consider a team of robots conducting science experiments on the surface of 
Mars, communicating with ground control on Earth over time delay.

The model indicates that if 
mission_interrupted, then 

robot_available should not be 
possible.

Correct, a mission interruption 
means the robot should not be 

available to start new tasks.

Red Computational Agent Prompt Human-Robot Blue Team Response

HRRT2: Analysis of Possibilities

[48] E. Sheetz, “Tool-Use Robot Manipulation Tasks for Cooperative and Explainable Operations in Safety-Critical Domains,” PhD 
Dissertation, University of Michigan, 2025.
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Consider a team of robots conducting science experiments on the surface of 
Mars, communicating with ground control on Earth over time delay.

The model includes action 
activate_redundant_comms, 

which should require pre-condition 
comm_blackout.

Incorrect, redundancy will be 
valuable in this domain, even without 

failures or blackouts.

HRRT3: Analysis of Assumptions

[48] E. Sheetz, “Tool-Use Robot Manipulation Tasks for Cooperative and Explainable Operations in Safety-Critical Domains,” PhD 
Dissertation, University of Michigan, 2025.

Red Computational Agent Prompt Human-Robot Blue Team Response
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Consider a team of robots conducting science experiments on the surface of 
Mars, communicating with ground control on Earth over time delay.

Are there additional tasks the robot 
should be taking on?

What catastrophic failures could 
occur in this domain?

Yes, microbial contamination 
detection and solar panel cleaning.

Major data loss or structural damage 
due to environment.

HRRT4: Analysis of “Unknown Unknowns”

Team updates the model based on these reflections.

[48] E. Sheetz, “Tool-Use Robot Manipulation Tasks for Cooperative and Explainable Operations in Safety-Critical Domains,” PhD 
Dissertation, University of Michigan, 2025.

Red Computational Agent Prompt Human-Robot Blue Team Response
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Consider a team of robots conducting science experiments on the surface of 
Mars, communicating with ground control on Earth over time delay.

Are there additional tasks the robot 
should be taking on?

What catastrophic failures could 
occur in this domain?

Yes, microbial contamination 
detection and solar panel cleaning.

Major data loss or structural damage 
due to environment.

HRRT4: Analysis of “Unknown Unknowns”

Computational agents algorithmically generate or look up information in 
response to prompts, and the human agents determine relevance.

[48] E. Sheetz, “Tool-Use Robot Manipulation Tasks for Cooperative and Explainable Operations in Safety-Critical Domains,” PhD 
Dissertation, University of Michigan, 2025.

Red Computational Agent Prompt Human-Robot Blue Team Response
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Ablation Study over HRRT Levels

Each ablation 
excludes higher 

levels of analysis.  
We tested each 

model hypothesis in 
200 randomized 
planning tasks, 

where each task 
included a random 
set of failure cases.
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Ablation Study over HRRT Levels

Each HRRT level 
builds upon the 

knowledge gained 
from previous levels. 

This evidence 
justifies our iterative 
process through the 

interrelated HRRT 
level analyses.
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Model Saturation through HRRT Iterations

These experiments 
also demonstrate 

saturation of 
modeled knowledge 

through HRRT 
iterations. After 

iteration 6, the model 
contained sufficient 

risk mitigation 
mechanisms to plan 
safely according to 
our set of failures.



[49] The Iron Giant, Directed by Brad Bird, Warner Bros., 1999.
[50] 2001: A Space Odyssey, Directed by Stanley Kubrick, Stanley Kubrick Productions, 1968.

• Space Applications
• Lunar Habitat: assist astronauts 

in pressurized lunar habitat
• Mars Science Team: science 

experiments by team of robots

• Household Applications
• Assembly and Repairs: regular 

home maintenance
• Cleaning: clean a house where 

family, children, and pets live

• Everyday Applications
• International Travel: robot 

personal assistant plans a trip
• Vehicle Maintenance: robot 

helps diagnose vehicle issues

• Cinematic Applications
• Nuclear Warfare: inspired by The 

Iron Giant
• AI Captain: inspired by 2001: A 

Space Odyssey

74 of 99

Safety-Critical Planning Domains
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Safety-Critical Planning Experiments

Across all tested domains, each iteration made the generated model hypotheses 
more capable of achieving task goals, mitigating risks, and avoiding critical failures.
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Safety-Critical Planning Experiments

Overall,
our HRRT 

methods help 
human-robot 
teams explore 
complexities 
of mitigating 

risks and 
acting safely.

Application
Class

Problem
Domain

Planning
Successes

Total
Tasks

Success
Rate

Space
Lunar Habitat 49 50 0.98

Mars Science Team 43 50 0.86

Household
Assembly/Repairs 50 50 1.00

Cleaning 44 50 0.88

Everyday
International Travel 46 50 0.92

Vehicle Maintenance 47 50 0.94

Cinematic
Nuclear Warfare 32 50 0.64

AI Captain 39 50 0.78
TOTAL 350 400 0.875



Safety-Critical Execution Experiments
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The robots learn to predict the best risk mitigating action based on the data 
generated by the human-robot red team.

We trained statistically significant, environment-specific risk assessment 
models for a lunar habitat and household environment.



Household Risk Mitigation
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The Valkyrie humanoid 
robot performs tool 
hand-off tasks in a 

household environment.  
Valkyrie assesses the 

risk of a human walking 
through the workspace 

and mitigates the risk by 
slowing motion to lower 

risk of injury.



Lunar Habitat Risk Mitigation
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The iMETRO armed 
robot performs sample 
stowage tasks as if in a 
lunar habitat.  iMETRO 

assesses the risk of not 
detecting the sample 
where expected and 
mitigates the risk by 

asking for assistance to 
complete the task.



[51] E. Sheetz et al., “Human-Robot Red Teaming for Safety-Aware Reasoning,” Ubiquitous Robotics, Under Review, 2025.

Risk Assessment and Mitigation Results
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Robots of different embodiments learned to assess and 
mitigate risks under different environment-specific 

definitions of safety through human-robot red teaming.

Environment Robot Total Trials Correct Risk Mitigating 
Action Success Rate

Lunar Habitat iMETRO 7 1.00
Household Valkyrie 5 0.60

Cumulative - 12 0.83



Human-Robot Teams in Safety-Critical Tasks
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A complete model 𝑀∗ of an unboundedly complex world is 
intractable.  A simplified model 𝑀 makes reasoning possible but 

may dangerously oversimplify.

Computational agents have their model 𝑀 built in, limiting their 
understanding to symbols in that model.  But with their large amount 

of real-world experience, humans can introduce new symbols to 
expand the team’s understanding to “unknown unknowns.”



Human-Robot Teams in Safety-Critical Tasks
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Our human-robot red teaming paradigm leverages this 
diversity of perspectives: robots use computational 
approaches to systematically challenge the human 

agents, and humans use their experience to introduce 
ideas and make evaluative moral judgments.



Through this collaborative dialogue, the team iterates on models 
𝑀,𝑀’,𝑀’’, … to improve their ability to plan around and mitigate risks, 
while still simplifying reasoning over intractable complete model 𝑀∗.

The problem of “unknown unknowns” can never be completely 
solved. But human-robot red teaming provides more opportunities 

for the team to reason about safety, promote understanding, 
calibrate trust, and improve knowledge of the problem domain.

Human-Robot Teams in Safety-Critical Tasks
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Future Work for Human-Robot Red Teaming
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Future work beyond the scope of the dissertation includes:
• Deploying model hypotheses on robots executing real-world tasks
• Investigating composition of human-robot teams for expert insights
• Testing more advanced language capabilities for improved safety dialogue



[51] E. Sheetz et al., “Human-Robot Red Teaming for Safety-Aware Reasoning,” Ubiquitous Robotics, Under Review, 2025.

Safety Reasoning on Human-Robot Teams
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The human-robot red teaming 
approach demonstrates the value of 

safety reasoning where teams engage 
in multiple levels of critical analysis in 

a problem domain 
(UR 2025, Under Review).

Our methods reduce overtrust and 
allow robots to earn appropriately 

calibrated trust on cooperative 
human-robot teams.



Dissertation Contributions
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Autonomous planning of complex assembly actions
(ICRA 2022)

Reliable and explainable execution of tool-use tasks
(IROS 2024)

Safety reasoning on human-robot teams
(UR 2025, Under Review)



Dissertation Contributions
Autonomous planning of complex assembly actions

(ICRA 2022)

Reliable and explainable execution of tool-use tasks
(IROS 2024)

Safety reasoning on human-robot teams
(UR 2025, Under Review)

87 of 99



Human-Robot Teams in Safety-Critical Domains
The dissertation explores challenges in (1) robot manipulation 

capabilities and (2) robot safety reasoning.
Our work contributes to robots operating as capable, trusted agents on 

human-robot teams in safety-critical problem domains.
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